

TFI Report 440929-06

Reduction of transmitted impact noise by floor coverings

Customer Mac Lean Products B.V.

Plaza 20

4782 SK Moerdijk NIEDERLANDE

Product underlay

Isocell

Responsible at TFI Dr.-lng. Alexander Siebel

Tel: +49 241 9679 170 a.siebel@tfi-online.de

This report includes 3 pages and 1 annex(es)

Aachen, 28.07.2014

Dr. Ernst Schröder

The present document is provided with a qualified electronic signature and is valid without autograph signature.

This report only applies to the tested specimens and has been established to the best of our knowledge. Only the entire report shall be reproduced. Under no circumstances, extracts shall be used. Furthermore, we apply the "General Terms and Conditions for the Execution of Contracts" of the Textiles & Flooring Institute GmbH, also with regard to the order execution. This report only applies to the tested specimens and has been established to the best of our knowledge. Only the entire report shall be reproduced. Under no circumstances, extracts shall be used. Furthermore, the "General Terms and Conditions for the Execution of Contracts" of the Textiles & Flooring Institute GmbH shall apply, also with regard to the order execution.

1 Transaction

Test order Impact sound reduction according to EN ISO 10140-3:2010,

EN ISO 717-2:2006

09.04.2014 Order date Your reference Marco Evers

Product designation Isocell

14-05-0261 TFI sample number

2 Product Specification / Construction

Construction (from top to bottom)	TFI sample number	Total thickness	Total mass per unit area		
QuickStep Eligna (floating laminate)	14-01-0190	8,0 mm			
Isocell (underlay)	14-05-0261	2,8 mm*	~ 147 g/m²		

customer information"

Floating laminate

QuickStep Eligna Product designation

14-05-0190 TFI sample number

Structure flat

Pattern multicoloured, patterned

Colour of the use surface brown, light brown, dark brown

Underlay

Product designation Isocell 14-05-0261 TFI sample number Type of underlay foam

Product image

(front/back side)

Page 2 of 3

3 Results

Impact sound reduction $\Delta L_w = 21 \text{ dB}$

 $\Delta L_{lin} = 10 \text{ dB}$

4 Annexes

Impact sound reduction TS 440929-06

The annexes marked a are based on tests accredited in accordance with EN ISO/IEC 17025.

Annex TS - Impact Sound Insulation

1 Transaction

Product designation Isocell

TFI sample number 14-05-0261
Testing period 26.05.2014

2 Test Method / Requirements

EN ISO 10140-3:2010 Laboratory measurement of sound insulation of building elements –

Part 3: Measurement of impact sound insulation

Deviations sample size > 10m²

weighted with 20 kg/m²

EN ISO 717-2:2013 Rating of sound insulation in buildings and of building elements –

Part 2: Impact sound insulation

Deviations None

3 Results

cf. p. 2

Impact sound insulation according ISO 10140-1

Measurment of impact sound insulation by a floor covering on a solid concrete floor

Product name Isocell 14-05-0261 TFI sample number

Construction 8mm II according to ISO 10140 QuickStep Eligna Category

(from top to bottom) 2,8mm Isocell

> Setting time Installed by laboratory

Installation

Reference floor solid concrete floor Note sample size > 10m²

weighted with 20 kg/m²

Testing period 26.05.2014

	⊖ [°C]	r.h. [%]
in the source room	19,2	54
in the receiving room	19.4	52

			7	50,0									
Frequency	$L_{n,0}$	ΔL	4	30,0							1		
f	third-octave	third-octave	1B]										
[Hz]	[dB]	[dB]) [c										: l
50	56,5	0,8	on 2								,		<u> </u>
63	62,7	3,4	ucti	40,0						+/			
80	57,4	3,0	red										
100	57,2	2,6	pur							¥			
125	67,5	2,9	: 501							/			
160	62,6	2,3	impact sound reduction AL [dB]	30,0		+			<u> </u>				
200	64,1	3,9	im						 				
250	67,1	5,7		ļ					/				
315	65,3	8,5							/				
400	64,7	10,6		20,0					$\vdash I$	_			
500	65	13,2											
630	65,3	18,8							/				
800	66,4	27,9						1	¢				
1000	67,8	34,4		10,0						-			-
1250	67,7	41,1						/					
1600	68,2	45,4											
2000	68,8	48,9				*	/						
2500	68,6	51,9		0,0	4	 							1
3150	67,9	53,4											
4000	66,9												
5000	64,4												
*Airborne noise co	orrection for the m	easured value		-10,0	63	125	250) 5	00	1000	20 frequ	00 iency f	4000 / Hz

Evaluation according to ISO 717-2 $\Delta L_w =$ 21 dB ΔL_{lin}= 10 dB $C_{I,\Delta}$ = -11 dB $C_{l,r} =$ 0 dB 2 dB $C_{l,r,50-2500} =$

The results are based on measurements, which were performed under laboratory conditions with artificial excitation (standard procedure)

Aachen, 28.07.2014